publications

2024

  1. End-To-End Clinical Trial Matching with Large Language Models
    Dyke Ferber, Lars Hilgers, Isabella C Wiest, Marie-Elisabeth Leßmann, Jan Clusmann, Peter Neidlinger, Jiefu Zhu, Georg Wölflein, Jacqueline Lammert, Maximilian Tschochohei, Heiko Böhme, Dirk Jäger, Mihaela Aldea, Daniel Truhn, Christiane Höper, and Jakob Nikolas Kather
    2024.
  2. GPT-4 for Information Retrieval and Comparison of Medical Oncology Guidelines
    Dyke Ferber, Isabella C. Wiest, Georg Wölflein, Matthias P. Ebert, Gernot Beutel, Jan-Niklas Eckardt, Daniel Truhn, Christoph Springfeld, Dirk Jäger, and Jakob Nikolas Kather
    NEJM AI, vol. 1, no. 6, 2024.
  3. Autonomous Artificial Intelligence Agents for Clinical Decision Making in Oncology
    Dyke Ferber, Omar S. M. El Nahhas, Georg Wölflein, Isabella C. Wiest, Jan Clusmann, Marie-Elisabeth Leßman, Sebastian Foersch, Jacqueline Lammert, Maximilian Tschochohei, Dirk Jäger, Manuel Salto-Tellez, Nikolaus Schultz, Daniel Truhn, and Jakob Nikolas Kather
    2024.
  4. In-context learning enables multimodal large language models to classify cancer pathology images
    Dyke Ferber, Georg Wölflein, Isabella C. Wiest, Marta Ligero, Srividhya Sainath, Narmin Ghaffari Laleh, Omar S. M. El Nahhas, Gustav Müller-Franzes, Dirk Jäger, Daniel Truhn, and Jakob Nikolas Kather
    2024.
  5. Joint multi-task learning improves weakly-supervised biomarker prediction in computational pathology
    Omar S. M. El Nahhas, Georg Wölflein, Marta Ligero, Tim Lenz, Marko van Treeck, Firas Khader, Daniel Truhn, and Jakob Nikolas Kather
    In International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2024.
  6. From Whole-slide Image to Biomarker Prediction: End-to-End Weakly Supervised Deep Learning in Computational Pathology
    Omar S. M. El Nahhas, Marko van Treeck, Georg Wölflein, Michaela Unger, Marta Ligero, Tim Lenz, Sophia J. Wagner, Katherine J. Hewitt, Firas Khader, Sebastian Foersch, Daniel Truhn, and Jakob Nikolas Kather
    Nature Protocols, 2024.
  7. Benchmarking Pathology Feature Extractors for Whole Slide Image Classification
    2024.
  8. A Good Feature Extractor Is All You Need for Weakly Supervised Pathology Slide Classification
    In European Conference on Computer Vision (ECCV), 2024.

2023

  1. Deep Multiple Instance Learning with Distance-Aware Self-Attention
    2023.
  2. Performance comparison between federated and centralized learning with a deep learning model on Hoechst stained images
    ISMB/ECCB Abstracts, 2023.
  3. Whole-Slide Images and Patches of Clear Cell Renal Cell Carcinoma Tissue Sections Counterstained with Hoechst 33342, CD3, and CD8 Using Multiple Immunofluorescence
    Georg Wölflein *, In Hwa Um *, David J Harrison, and Ognjen Arandjelović
    Data, vol. 8, no. 2, 2023.
    * equal contribution
  4. HoechstGAN: Virtual Lymphocyte Staining Using Generative Adversarial Networks
    In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2023.

2022

  1. Use of High-Plex Data Reveals Novel Insights into the Tumour Microenvironment of Clear Cell Renal Cell Carcinoma
    Raffaele De Filippis *, Georg Wölflein *, In Hwa Um, Peter D Caie, Sarah Warren, Andrew White, Elizabeth Suen, Emily To, Ognjen Arandjelović, and David J Harrison
    Cancers, vol. 14, no. 21, 2022.
    * equal contribution

2021

  1. Determining Chess Game State from an Image
    Georg Wölflein, and Ognjen Arandjelović
    Journal of Imaging, vol. 7, no. 6, 2021.

datasets

  1. Whole slide images and patches of clear cell renal cell carcinoma counterstained with multiple immunofluorescence for Hoechst, CD3, and CD8
    BioImage Archive, 2022.
  2. Dataset of Rendered Chess Game State Images
    Georg Wölflein, and Ognjen Arandjelović
    Open Science Foundation, 2021.

theses

  1. Determining Chess Game State From an Image Using Machine Learning
    Georg Wölflein (supervised by Ognjen Arandjelović)
    University of St Andrews, 2021.
  2. Freeing Neural Training Through Surfing
    Georg Wölflein (supervised by Michael Weir)
    University of St Andrews, 2020.