chesscog.transfer_learning package¶
This module contains all code to fine-tune chess recognition system to a new chess set.
Submodules¶
chesscog.transfer_learning.create_dataset module¶
Script to create the piece and occupancy classification datasets from the input dataset of images.
$ python -m chesscog.transfer_learning.create_dataset --help
usage: create_dataset.py [-h]
Create the piece and occupancy classification datasets.
optional arguments:
-h, --help show this help message and exit
chesscog.transfer_learning.download_dataset module¶
Script to download the sample dataset of a different chess set.
$ python -m chesscog.transfer_learning.download_dataset --help
usage: download_dataset.py [-h]
Download the sample transfer learning dataset.
optional arguments:
-h, --help show this help message and exit
chesscog.transfer_learning.download_models module¶
Script to download the fine-tuned classifiers on the sample dataset.
Running this script will download both classifiers used in the report in the chapter “Adapting to new chess sets”.
They will be downloaded to models://transfer_learning
.
$ python -m chesscog.transfer_learning.download_models --help
usage: download_models.py [-h]
Download the fine-tuned piece and occupancy classifiers.
optional arguments:
-h, --help show this help message and exit
chesscog.transfer_learning.evaluate module¶
Script to evaluate the performance of the fine-tuned recognition pipeline on the new chess set.
$ python -m chesscog.transfer_learning.evaluate --help
usage: evaluate.py [-h] [--dataset {train,val,test}] [--out OUT]
Evaluate the chess recognition system end-to-end.
optional arguments:
-h, --help show this help message and exit
--dataset {train,val,test}
the dataset to evaluate (if unspecified, train and
test will be evaluated)
--out OUT output folder
chesscog.transfer_learning.recognition module¶
Script to perform a single inference using the fine-tuned system on the new dataset.
$ python -m chesscog.transfer_learning.recognition --help
usage: recognition.py [-h] [--white] [--black] file
Run the chess recognition pipeline on an input image
positional arguments:
file path to the input image
optional arguments:
-h, --help show this help message and exit
--white indicate that the image is from the white player's
perspective (default)
--black indicate that the image is from the black player's
perspective
chesscog.transfer_learning.train module¶
Script to train (i.e. fine-tune) the classifiers on the new dataset.
$ python -m chesscog.transfer_learning.train --help
usage: train.py [-h]
Fine-tune the classifiers on the new dataset.
optional arguments:
-h, --help show this help message and exit